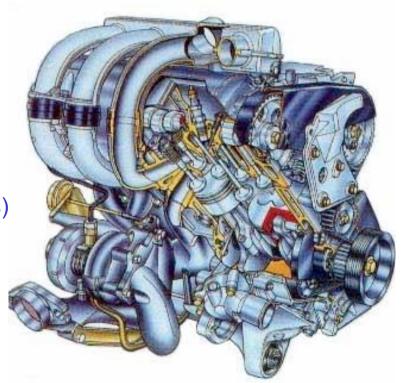


Chapter 5: Spark Ignition Engines (Otto engines)

Learning Objectives of Chapter 5

- ⇒ know the <u>fuel properties</u> required for an Otto cycle and recognize the different phases of the <u>combustion process</u>
- ⇒ know the operating principles of the most common <u>fuel injection</u> systems used in Spark Ignition Engines
- ⇒ understand the <u>load regulation</u> strategy of S.I engines and the influence of key control parameters on performances
- ⇒ identify the low & high efficiency regions in the operating map for S.I. Engines and their associated limits

Content of Chapter 5

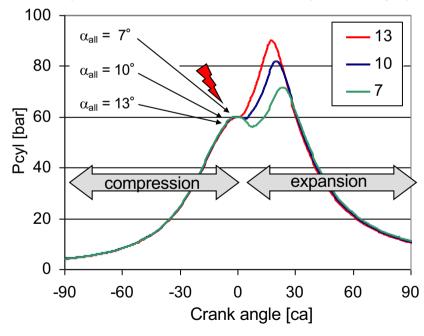

- Application range
- Operating principle
 - Fuel properties of "gasoline"
 - Injection system
 - Ignition system
 - Combustion process in S.I. engines
- Load regulation parameters
 - Partial load operation
 - Full load operation
- Energy distribution in S.I. engines
 - Origin of losses and representation in the operating map
 - Comparison between C.I. and S.I. Engines

Application range

Common use and applications

- 4-stroke cycle
 - Motorcycles ($V_{cyl} > 125 \text{ cm}^3$)
 - Passenger cars
 - High-speed marine engines
 - Agricultural machines (small V_{cyl})
 - Airborne vehicles (airplane, helicopters)
- 2-stroke cycle (trend to △)
 - Scooters
 - Motorcycles (V_{cyl} ≤ 125 cm³)
 - Home-use (scale model)

Content of Chapter 5


- Application range
- Operating principle
 - Fuel properties of "gasoline"
 - Injection system
 - Ignition system
 - Combustion process in S.I engines
- Load regulation parameters
 - Partial load operation
 - Full load operation
- Energy distribution in S.I engines
 - Origin of losses and representation in the operating map
 - Comparison between C.I and S.I Engines

General

- The combustion process in Spark Ignition (S.I.) engines is ignited by an <u>external</u> device (generally by a spark plug which produces an electric arc) at a given time (=given crank angle) of the engine cycle
- The electric arc enables to :
 - ⇒ obtain the favorable conditions for auto-ignition of the mixture
 - ⇒ initiate the combustion process
 - ⇒ control the start of the combustion
- α_{all} : spark <u>advance</u> angle (7,10,13,...) ('all=allumage (fr): spark ignition)
 - ⇒ (degrees <u>before</u> TDC) defines the timing of the combustion in the engine cycle

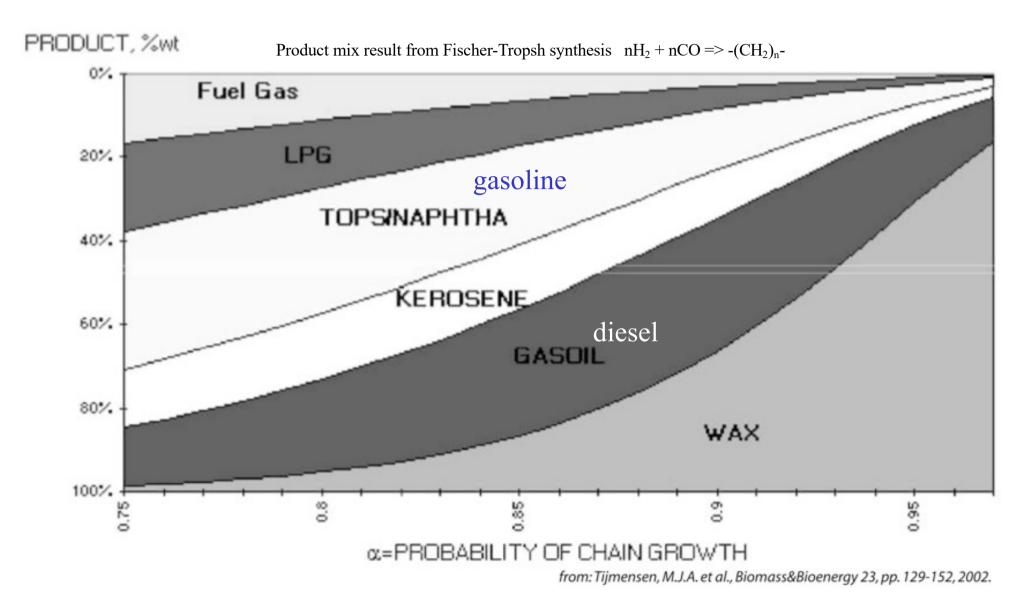
Cylinder pressure evolution = f(crank angle)

Rule-of thumb: the most efficient point for combustion is when peak-pressure is reached at +10 to +15 crank angle degrees

Representation of auto-ignition delays P-T-diagramme for hydrocarbons Low oxidation domain Auto-ignition delay «Slow» oxidation of the mixture The spark, thanks to a very fast local temperature rise, Low Pressure & Temperature moves the time for auto-ignition of the fuel-air mixture from 1 s to <0.1 ms Explosivity domain «Fast» combustion **Explosivity** Pressure domain Delay of auto-ignition τ < 1 s froides" Spark plug Source of ignition **Explosivity** Reduces the delay of auto-ignition limit by \triangledown the local temperature ($\tau << 1 \text{ ms}$) Low-oxidation Péninsule à longs délais domain $E_{\rm el} \ge E_{\rm min\ initiation} \approx {\rm ca.\ 10\ [mJ]}$ **Temperature** 100W x 0.1 ms Initiation of the combustion process by an electric arc Local T of the electric arc >> 3000° C

The spark creates radicals and ionizes air which starts the combustion chain reaction

Fuel properties of gasoline


 λ : relative to a homogeneous mixture

ρ [kg/L]	Distillation Initial T°	range [°C] Final T°	nmbr of carbon atoms	R _{A/F} [kg _{air} /kg _{fuel}]	Upper flammability limit [φ] / [λ]	Lower flammability limit [φ] / [λ]
0.72 - 0.77	30 - 35	180 - 200	4 - 11	≈ 14.4 – 14.7	3.8 / 0.27	0.6 / 1.66

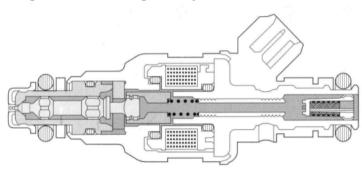
- Octane Number : RON (Research) / MON (Motor)
 - characterizes the resistance to the auto-ignition of a fuel
 - RON xx ⇒ corresponds to a binary mixture of 2 pure HC fuels with the same behavior than the one which is analyzed (i.e. knocking occurrence) on a reference engine (ε (CR) adjustable from 4:1 to 18:1)
 - RON 0 : corresponds to a fuel-mix identical to 100% n-heptane (very favorable for auto-ignition)
 - RON 100 : corresponds to a fuel-mix identical to 100% iso-octane (very resistant to auto-ignition)
 - RON 95 : corresponds to a fuel-mix identical to a mixture with 95% iso-octane and 5% n-heptane.
 - Commercial fuels : RON = 95 to 98 (≈103 in F1)

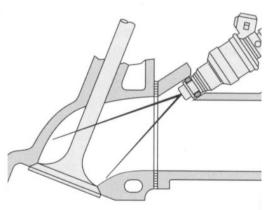
Rem: fuel mixtures as f(carbon number)

Corresponds to the different fractions from oil distillation

- Injection systems (from old to new)
 - Carburetor

Continuous fuel injection

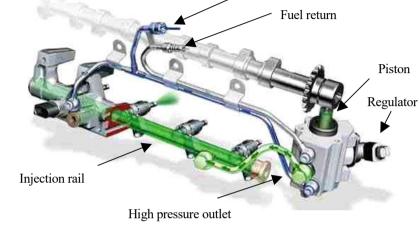

Indirect injection

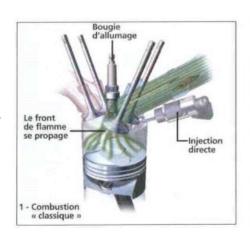

electronic injection on timing with the engine cycle

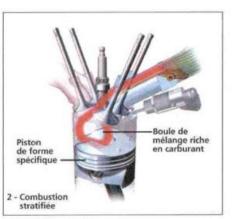
Direct injection

Indirect injection

- Electronic actuators (magnet valves)
- Sequential injection
- Low pressure injection into the air circuit
 - in the range between 3 and 6 bar
 - before the intake valves
- Air-fuel mixture is homogenous (const. λ)
- Controlled by varying the current duration: $t_{\text{injection}}$ Injection duration gives the fuel quantity : $t_{\text{inj}} = f(M_{\text{F}})$
 - ⇒ requires an ECU (Electronic Control Unit)
 - ⇒ requires sensors to know the thermodynamic conditions of the engine






Direct injection

- Injection under high pressure directly into the combustion chamber
- P_{ini} set between 5 and 120 bar (Diesel:2000 bar!)
- 2 strategies of injection are feasible:
 - A) During *intake* of the air/mixture
 - ⇒ Air-Fuel mixture is **homogeneous**
 - B) At the *end of the compression* stroke
 - ⇒ Air-Fuel mixture is **heterogeneous (or stratified)** 'diesel-like'

Injection in homogeneous mixture

Injection in heterogeneous (or stratified) mixture (FSI Fuel-stratified injection)

Fuel intake

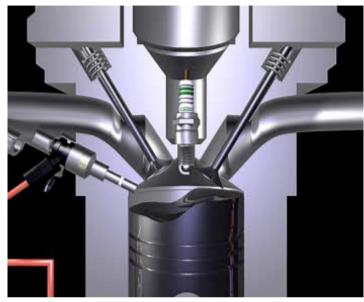
Direct injection

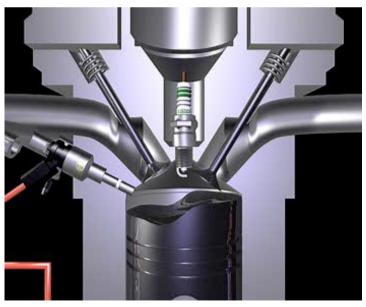
Homogeneous mixture

for **FULL** load

or Injection @few bar @BDC homogeneous operating mode ⇒

$$\lambda(x, y, z) = \lambda_{global} = cte$$
 $\lambda = 0.3 \dots 1.7$



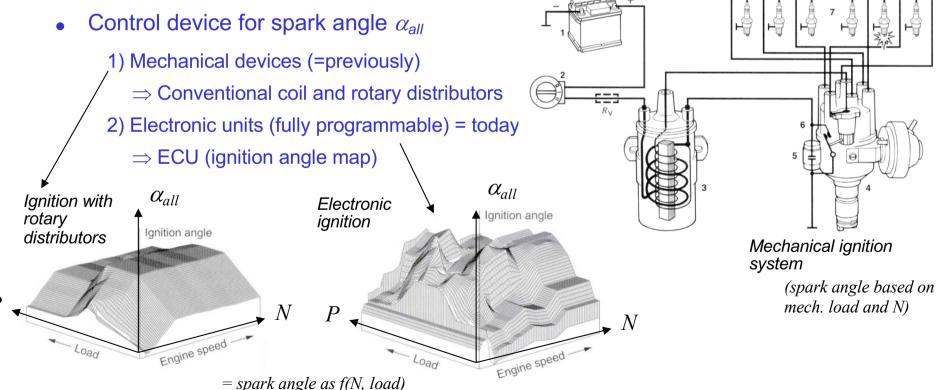


or Injection @30-40 bar @TDC heterogeneous operating mode (stratified mode) ⇒

$$\lambda(x,y,z) = \nabla_{x,y,z}$$

Only air is compressed, the throttle valve does not have to be closed too much => better part load efficiency

 $\lambda = local$

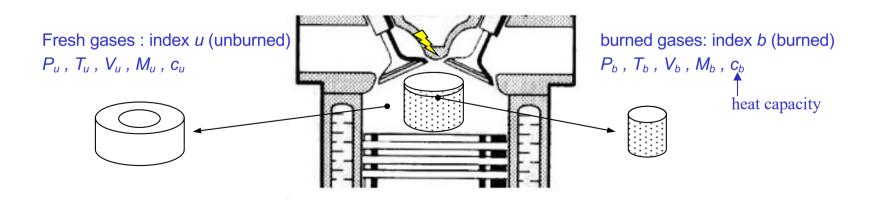


Ignition system

- Function: generate the required conditions to initiate the combustion process
- Energy input given by a spark ⇒ produced at high voltage between 2 electrodes
 ≈10 to 20 kV (10 kV * 10 mA = 100W, for 0.1 ms => 10 mJ)

• The optimal spark timing angle (advance angle) depends on the engine speed (N)

and load (P_{adm}) = operating map

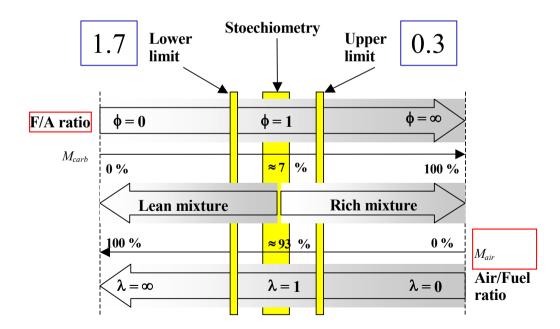


'all = allumage' (fr) = S.I.

Combustion process in S.I. engines

- According to the ignition system used (direct or indirect injection), there
 are 2 different combustion processes in S.I engines:
 - Combustion in homogeneous mixture
 - Combustion in stratified mixture
- For both cases, the mean to initiate the combustion is identical:
 - Ignition by an external source (spark generated by an electric discharge)
 - Propagation of a turbulent flame at high speed dividing the combustion chamber into 2
 zones: fresh (unburned) gases (u) & burned gases (b):

Combustion process in S.I. engines


- Homogeneous combustion process:
 - Air / Fuel ratio is constant everywhere in the comb. chamber:

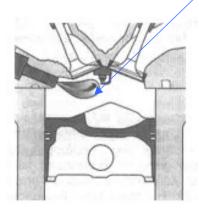
$$\lambda(x, y, z) = \lambda_{global}$$

lower and upper

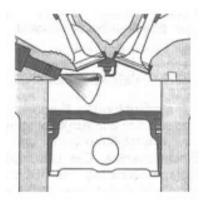
flammability limits (sl. 8)

Condition for flame propagation during the combustion : $L_I < \lambda < L_S$ λ_{mixture} should be contained in the flammability range: 0.3 < λ < 1.7 (going beyond these limits is only possible by stratified combustion)

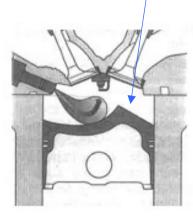
In practice: $\lambda = 1.0$ for exhaust gas after-treatment by 3-way catalyst (catalytic converter)


- Combustion process in S.I. engines
 - **Stratified** combustion process:
 - **Heterogeneity** of the Air / Fuel mixture in the C.C : $\nabla \lambda(x, y, z) \rightarrow \lambda(x, y, z) \neq \lambda_{global}$

$$\nabla \lambda(x, y, z) \rightarrow \lambda(x, y, z) \neq \lambda_{global}$$

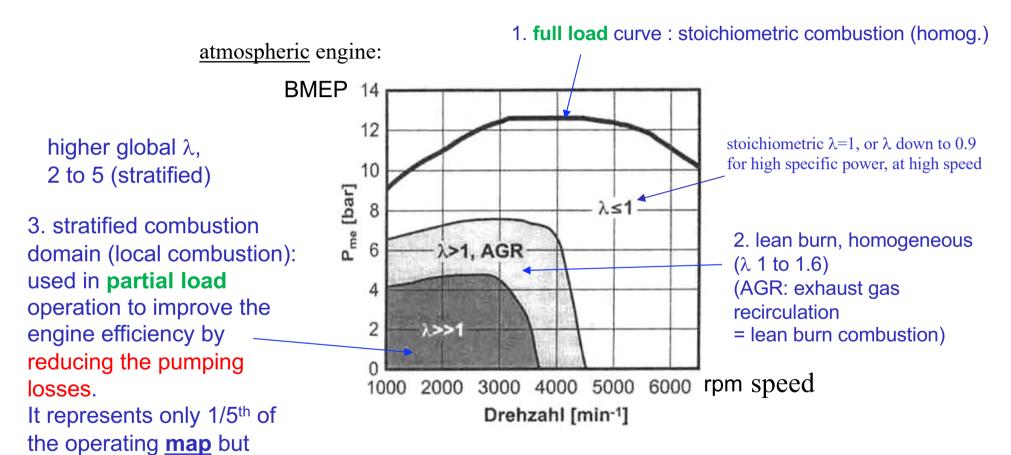

- Stratification of the mixture \Rightarrow consists of splitting the chamber in 2 zones:
 - 1) A/F mixture at $\lambda_{local} \approx 1$

2) Fresh Air domain (inert for the process)


3 possibilities (ways) to control the stratification:

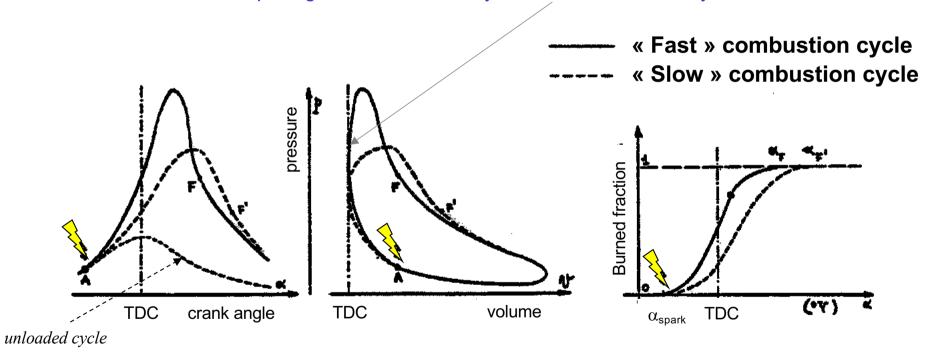
by the injection system (orient fuel close to spark)

2) by the internal air motion (vortex, turbulence)


3) by the design (shape) of the chamber / piston

most (80-90%!) of the

operating time!

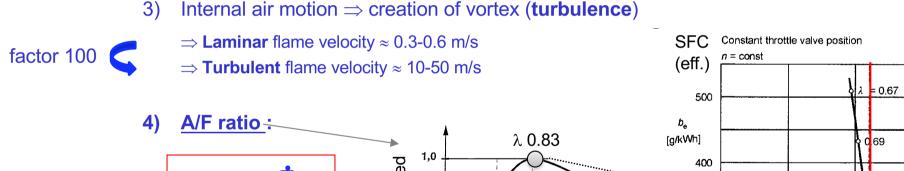

Combustion process in S.I. engines

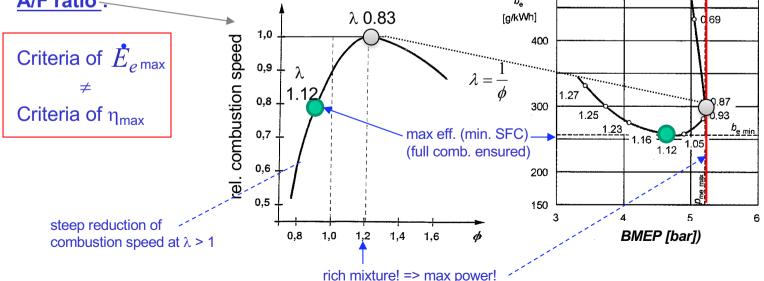
For turbocharged engines, the operating map is displaced a bit: the engine is downsized => the full load curve goes down, the operating regime of the stratified range is widened

- Combustion process in S.I. engines
 Key parameters affecting the combustion
 - Combustion speed:
 - Ideal spark ignition combustion cycle = constant volume cycle

=> we want to accelerate the combustion speed (to maximise efficiency) because the combustion process in Otto engines depends only on internal parameters (ϵ, γ)

≠ Diesel engine, where the rate of fuel injection influences the combustion duration

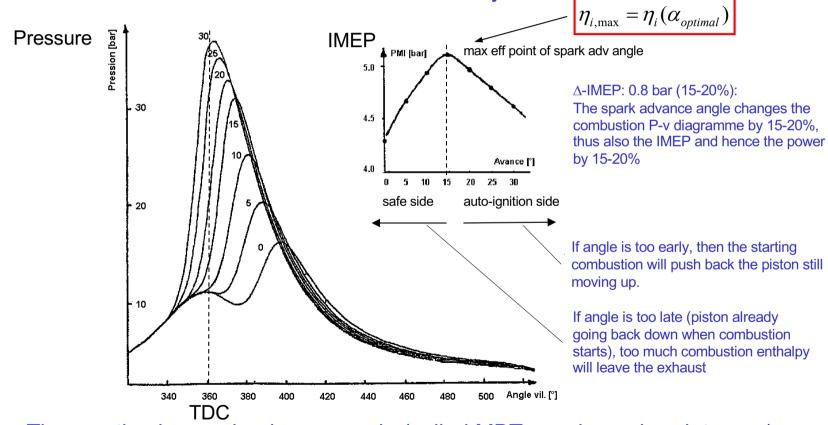

Combustion process in S.I. engines Key parameters affecting the combustion (1):


v slow (laminar) speed for all fuels

 $\vec{v}_{Isooc \, tan \, e} \approx 41 \, cm \, / \, s$

 $|\vec{v}_{H2}| \approx 325 \ cm/s$

- The combustion **speed** depends on the following 4 factors: $|\vec{v}_{CH4}| \approx 45 \text{ cm/s}$
 - Type of fuel : example of laminar propagation speed at $\lambda \approx 1$:___
 - Pressure and temperature conditions of the mixture
 - Internal air motion ⇒ creation of vortex (**turbulence**)



Combustion process in S.I. engines

Key parameters affecting the combustion (2): spark advance angle

 \Rightarrow enables to "set" / "time" correctly the combustion process in the engine cycle in

order to minimize the loss of indicated efficiency:

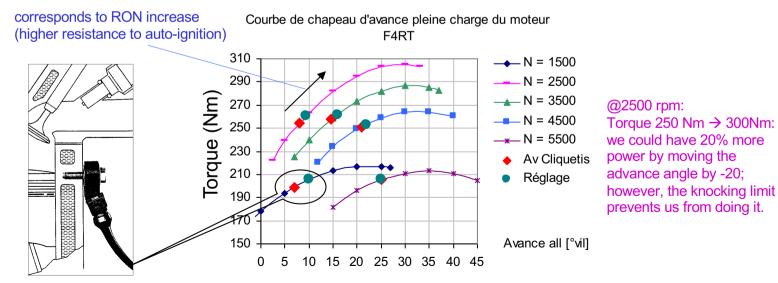
⇒ The « optimal » spark advance angle (called MBT: maximum break torque) maximizing the engine torque is directly linked to the combustion speed

Combustion process in S.I. engines

Auto-ignition phenomenon: knocking (in french: cliquetis)

- The optimal timing of the combustion is limited by the <u>knock</u> phenomenon:
 - ⇒ corresponds to the auto-ignition of a part of the unburned fuel-air mixture (end-gas) still not reached by the flame propagation.
 - \Rightarrow This auto-ignition produces a spontaneous and rapid combustion ($v_{comb} \lozenge \lozenge)$ in a 2nd zone => 2 flame fronts collide, which causes high <u>local</u> pressure variations (shock waves) followed by high vibrations of the gases (propagation of pressure waves at a velocity of 500 to 900 m/s). (1 Mach = 340 m/s)
 - ⇒ engine components can be extremely damaged (in a matter of seconds):

Combustion process in S.I. engines


Auto-ignition phenomenon: knocking

Engine cycle with knocking appearance: $P_B = P_U$ knocking u: unburned Gaz brûlés b: burned Auto-inflammation normal combustion phase T_B, P_B _"End-gas" Durée du délai d'auto-inflammation $T_U, P_u > T_{U, \max}, P_{u, \max}$ explosion domain cold Ignition delay region flame in knock condition $v_{Knock} = \sqrt{\gamma \cdot r \cdot T}$ Ignition delay region speed of sound formula in normal operation $T_{U.\mathrm{max}}$, $P_{U.\mathrm{max}}$ $f_{Knock} \approx 4 - 8 \, kHz$ slow oxidation Péninsule à P.M.H 340 360 380 Angle rotation crank angle **TDC** spark too early => ∆T *>*

When the accelerometer registers 4-8 kHz vibrations, the ECU has to reduce the spark advance angle.

- Combustion process in S.I. engines
 - Auto-ignition phenomenon: knocking
 - Influence of operating parameters on knocking tendency:
 - 1. Air/Fuel mixture composition
 - ⇒ Tendency to increase the *RON* of the fuel
 - 2. Temperature and pressure of the fresh gas mixture
 - \Rightarrow Tendency to reduce (!) the compression ratio ($\varepsilon \bowtie \text{for } \bowtie \eta_i$)!
 - \Rightarrow Tendency to reduce α_{all} (spark advance angle) until knock occurrence

knock sensor (accelerometer)

Green: limit of knocking occurrence

Red: safety margin fixed by the ECU

- Application range
- Operating principle
 - Fuel properties of a "Gasoline"
 - Injection system
 - Ignition system
 - Combustion process in S.I. engines
- Load regulation parameters
 - Partial load operation
 - Full load operation
- Energy distribution in S.I. engines
 - Origin of losses and representation in the operating map
 - Comparison between C.I and S.I Engines

Relations (cf. Diesel engine slides)

• Multicylinder:

$$\dot{E}_{e} \text{ as a function of } \dot{M}_{A}: \qquad \dot{E}_{e} = \underbrace{\eta_{mec} \cdot \eta_{i} \cdot \dot{M}_{A} \cdot q}_{\dot{M}_{F} \cdot LHV} \quad \text{with}$$

 $\dot{M}_{\rm a}$ as a function of $P_{\rm coll}$, $T_{\rm coll}$:

$$\dot{M}_{A} = n_{c} \cdot \eta_{vol} \cdot \frac{P_{coll}}{r \cdot T_{coll}} \cdot V_{u} \cdot n$$

with $V_{cyl} = n \cdot V_u$

 M_{Δ} : Total mass air flow of the engine

 n_c : Number of engine cycles per second

 M_A : Mass of air introduced into a cylinder and per cycle

q: Energy content of the mixture: [kJ/kg_{air}]

 $\dot{E_{\rm e}}$ as a function of $P_{\rm coll}$, $T_{\rm coll}$:

$$\dot{E}_{e} = \underbrace{\eta_{mec} \cdot \eta_{i}}_{\eta_{e}} \cdot \underbrace{\frac{N}{60 \cdot n_{TM}}}_{n_{c}} \cdot \underbrace{\eta_{vol} \cdot \frac{P_{coll}}{r \cdot T_{coll}}}_{M_{A}} \cdot V_{u} \cdot n \cdot q$$

Rem: 'coll(ector) = intake, admission'

- Load regulation for S.I. engines: summary
 - A) **Stoichiometric** engines:

Effective power depends on
$$\Rightarrow$$
 $\dot{E}_e = f(\eta_{mec}, \dot{\eta}_i, \dot{N}, \dot{M}_A, \dot{q}(\lambda=1))$

Means of action on E_e :

Mass of air : M_A

$$M_{air} = f(\eta_{vol}, T_{adm}, P_{adm})$$

Energy content of the mixture : q

$$q = f(LHV, R_{A/F}, \lambda)$$

Fuel/Air ratio variation is limited by the stoichiometric operating mode of the engine

$$q = cte$$

Pressure variation into the manifold

- $\Rightarrow P_{\text{coll}}$ is the only means of action to control the power
- \Rightarrow Problem: for atm. Otto engines: $P_{coll} \approx P_0$
- ⇒ creation of a pressure drop on the intake manifold system (throttle valve) in order to have $P_{coll} \ll P_0$

 $P_{\text{adm}} \Rightarrow$ means of action to reduce the power of stoichiometric engines

⇒ potential to increase the maximal power of the engine

- Load regulation for S.I. engines: summary
 - B) **Lean burn** engines :

 $\lambda > 1$

■ Effective power depends on ⇒

$$\dot{E}_e = f(\eta_{org}, \eta_i, N, M_A, q(\lambda))$$

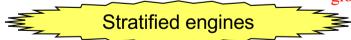
secondary action Means of action on E_e : $\rho_{rim_{ary}}$ $\rho_{rim_{ary}}$

Mass of air : M_A

$$M_{air} = f(\eta_{vol}, T_{adm}, P_{adm})$$

Energy content of the mixture : q

$$q = f(LHV, R_{A/F}, \lambda)$$


Pressure variation into the manifold

- \Rightarrow P_{coll} is a means of action to control the power
- \Rightarrow Creation of a pressure drop on the intake manifold system (throttle valve) in order to have $P_{coll} < P_0$

Fuel/Air ratio variation

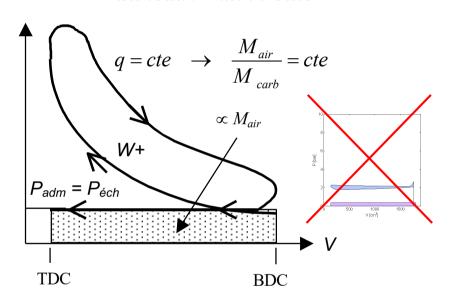
homogeneous

- \Rightarrow Problem : flammability range ($\lambda > 1.6$)
- \Rightarrow Solution : F/A ratio gradient ($\nabla \lambda$) heterogeneous, global λ 2-5

 $P_{\text{coll}} \Rightarrow \underline{\text{complementary}}$ means of action to change / control the engine load

 $\lambda \Rightarrow \underline{\text{main}}$ means of action to change / control the engine load

A stratified engine still has a throttle valve, but it is more often wide open, and reduced only slightly.

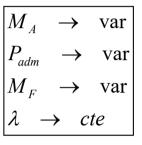

Partial load operation

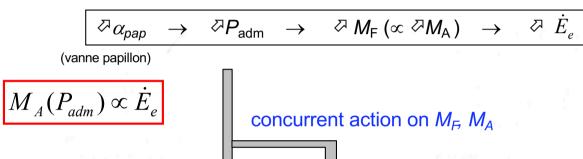
1. Action on P_{coll} (= P_{adm}):

Partial load

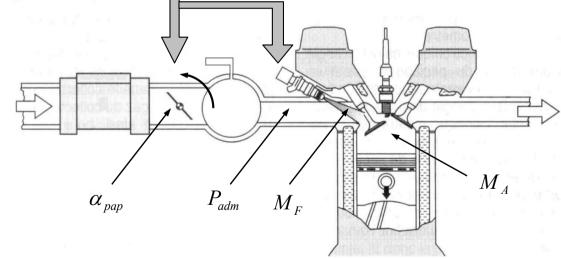
 $P \qquad q = cte \rightarrow \frac{M_{air}}{M_{carb}} = cte \qquad P$ $\propto M_{air}$ $\propto M_{air}$ $\text{intake 300 mbar !} \rightarrow P_{adm}$ TDC BDC

Full load / Full throttle

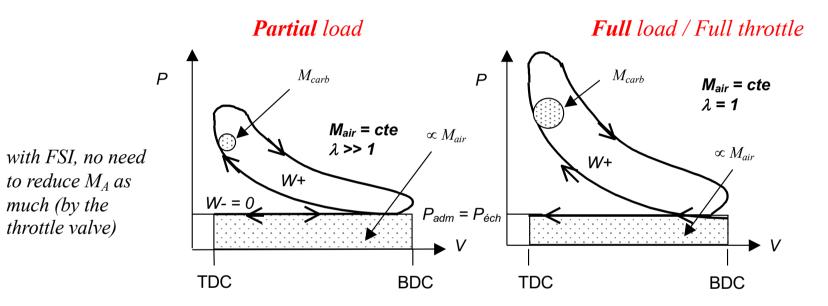



- \Rightarrow Operation at a constant A/F ratio : λ = 1
- \Rightarrow During partial load operation, creation of a <u>negative</u> low-pressure loop in the engine cycle generates "pumping losses": $IMEP_{LP} \approx \Delta P_{exh-adm} = P_{exh} P_{adm}$

Partial load operation

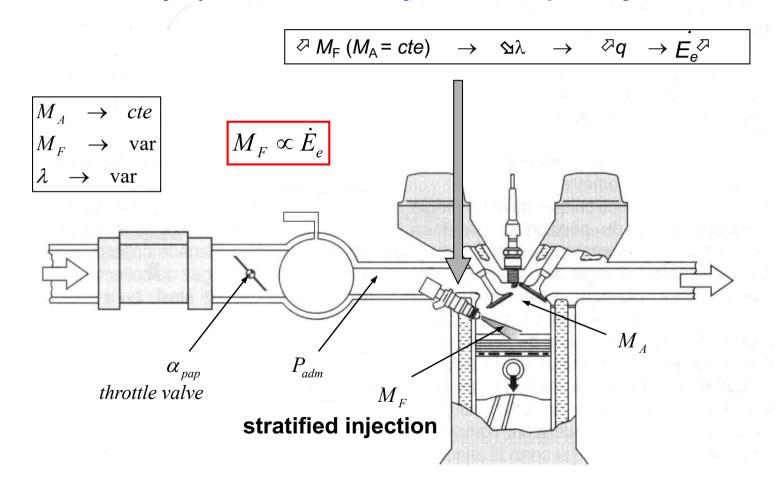

• Control of E_e by action on the throttle valve in order to reduce the pressure into the intake manifold (to maintain $\lambda=1$)

Animation (throttle valve):



Partial load operation

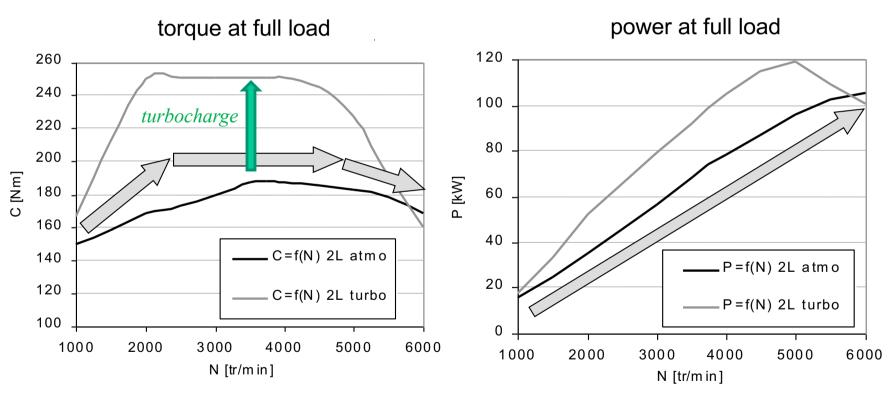
2. Action on λ :



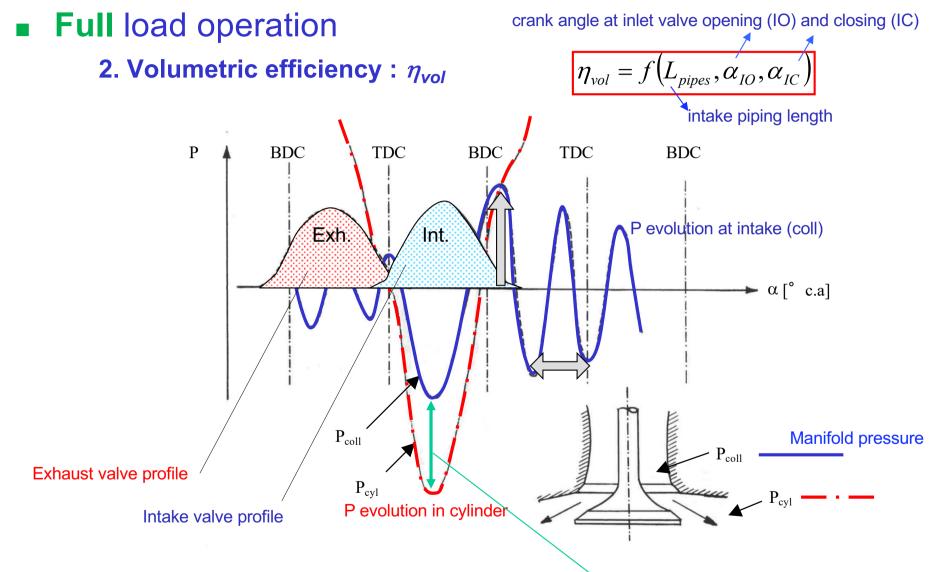
- \Rightarrow λ_{global} is above the flammability limit, but $\lambda_{local} \approx$ 1 so the flammability conditions of the mixture are <u>locally</u> satisfied
- ⇒ In both cases, <u>absence</u> of a <u>negative</u> low pressure loop in the engine cycle, leading to improvement of the global efficiency

Avoid the low pressure loop by having a ≈same amount of air in the cylinder, by the fuel stratified condition: controls the partial load without a throttle valve at the air inlet.

- Partial load operation
 - Control of E_e by action on the injected fuel quantity:

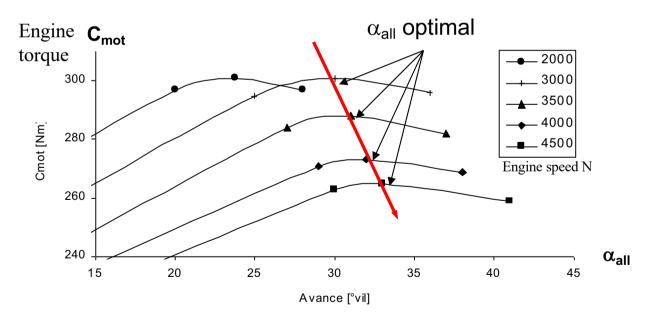


Full load operation


means of action

• Reminder: Effective power depends on $\Rightarrow \dot{E}_e = f(N, \eta_{vol}, P_{adm}, \eta_i, q)$

1. Engine speed: N



The target is positive ΔP when inlet valve is open

Full load operation

- **3. Intake pressure :** P_{coll} (Turbocharging, see Chapter 4)
 - Compressor ⇒ mechanical driveshaft on the crankcase
 - Turbocharger $\Rightarrow h_{exhaust}$ recovery by a turbine
- **4. Indicated efficiency**: $\eta_i \Rightarrow$ optimal spark advance angle α_{all} (limited action)

For each full load point (as fct of engine speed N) there is an optimal spark advance angle α_{all} , in order to maximize the torque C

Content of Chapter 5

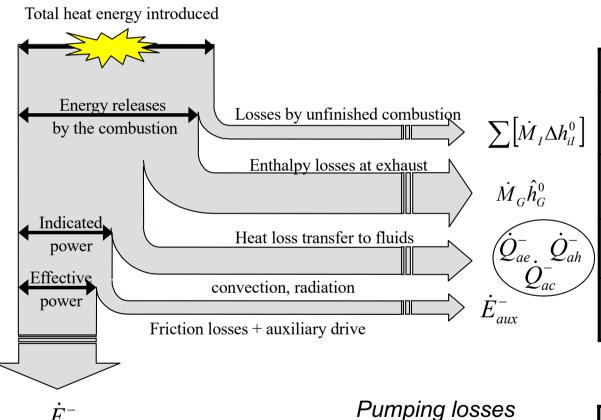
- Application range
- Operating principle
 - Fuel properties of gasoline
 - Injection system
 - Ignition system
 - Combustion process in S.I engines
- Load regulation parameters
 - Partial load operation
 - Full load operation
- Energy distribution in S.I. engines
 - Origin of losses and representation in the operating map
 - Comparison between C.I. and S.I. Engines

Energy balance for S.I. Engines

- Origin of losses:
 - Losses by unfinished combustion (specially in full load operation if λ < 1, rich burn conditions)
 - Enthalpy losses at the exhaust (T_{exh} is higher than C.I. engines because ε = 9 to 12:1)
 - Heat transmitted to cooling / oil circuits
 - Friction losses and driving the auxiliary components
 - Pumping losses in partial load operation ($IMEP_{BP} < 0$) (not the case with C.I.)

Energy balance for S.I. Engines

 Representation in operating map Fuel excess for high power: knocking limit: spark advance angle poor efficiency has to be reduced=>lower efficiency $\lambda(\dot{E}_{e, ext{max}})$ red: high efficiency green: low efficiency 290 **BMEP SFC SFC** 270 Consommation spécifique équivalente (en g/kWh) [g/kWh] Couple [Nm] 250 230 763 -38.0▲ N = 3500 10 210 -N = 4500230 36.4 Av Cliquetis 190 etuelseine equivalente 310 250 33.5 Réglage 255 170 + 32.2 260 Avance all [°vil] 260 270 + 29.9 30 280 10 15 310 310 (en bar) 270 300 + 27.9 290 320 350 + 23.9 290 $IMEP_{BP} = P_{exh} - P_{adm} < 0$ 400 +20.9350 500 + 16.7350 350 430 430 P [bar] pumping losses 900 + 9.3(throttle valve) 1500 + 5.6régime (tr/min) 3000 + 2.85000 5500 6000 2000 2500 3000 3500 4000 4500 P_{adm} 1000 1500 V [cm³] engine speed ≥ : higher friction loss

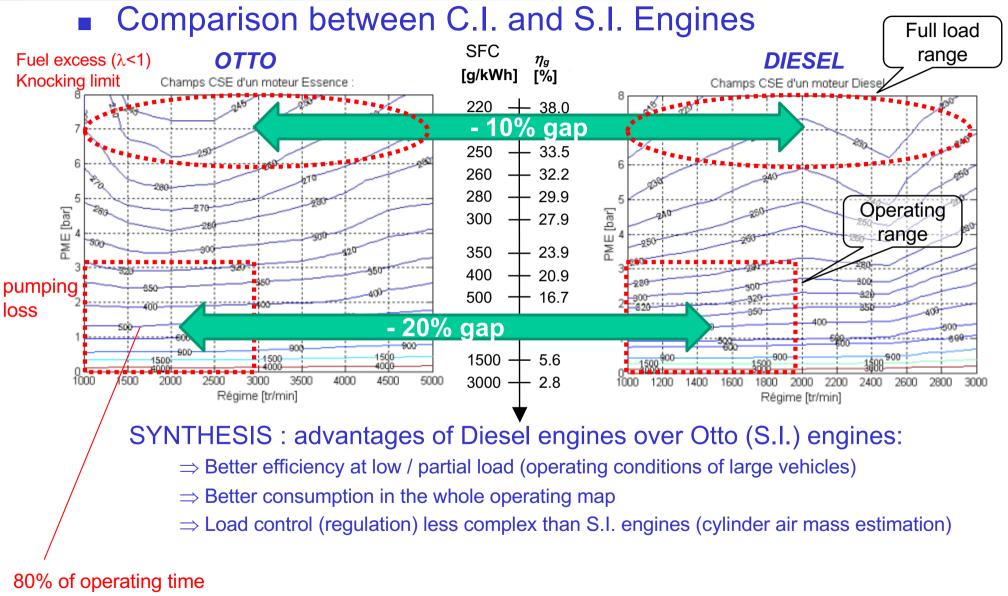

- Energy balance for S.I. Engines
 - Origin of losses and operating map SUMMARY:
 - \Rightarrow Low efficiency by **low load** operation due to pumping losses for stoichiometric engines (λ =1)
 - ⇒ Optimal efficiency at high load is limited by knocking phenomena (reduction of spark advance angle, towards TDC)
 - ⇒ The use of a low compression ratio (limited by knocking) puts at a disadvantage the global efficiency in the whole operating map
 - \Rightarrow The maximal power (in full load) is obtained for rich burn conditions (λ <1), hence efficiency degrades

=> Development axes of S.I. engines are focused on the improvement of global efficiency

Comparison between C.I. and S.I. Engines

	/	
$ \eta_{Otto} \approx 30 - 35\% $	/	$\eta_{Diesel} pprox 40 - 45\%$

 λ @ max power


Diesel (C.I.)	
+	
$(\lambda_{\text{mean}} > 1)$	
+	
$T_{\rm exh} \approx 500\text{-}600^{\circ}$ C	
Ш	
-	
(injection syst.)	

(fuel injection pump)

 +

in partial load

